

Read#: A System for Active Reading

Abstract
 In this paper, we introduce Read# a new system for
document interaction and active reading activities.
Read# allows for digital interactions synchronously with
paper. The system allows a computer to be invisibly
integrated into the reading environment and naturally
track and record a reader’s gestures while minimizing
the number of deliberate actions a user needs to make
to annotate and comprehend a piece of reading.

Author Keywords
Interactive Workspace; Active Reading; Tabletop
Computing

ACM Classification Keywords
H.4 Information Systems Applications; H.5 Information
Interfaces and Presentation; H.5.2 User Interfaces

Introduction
Current trends in technology have been transforming
analog objects into digital objects. However, paper is
one artifact that people still prefer as their medium
rather than its digital counterparts. We have developed
a system to allow the user to continue using paper as
their preferred medium while being able to enjoy the
features of digital documents; features such as defining
words, digital highlights, and annotating a digital copy.
Read# is designed to promote digitizing reading
material for later collaboration, online or offline,

Copyright is held by the author/owner(s).

CHI’13, April 27 – May 2, 2013, Paris, France.

ACM 978-1-XXXX-XXXX-X/XX/XX.

Sam Bartleman
UC San Diego
9500 Gilman Dr.
La Jolla, CA 92093 USA
sbartlem@ucsd.edu

Julia Lin
UC San Diego
9500 Gilman Dr.
La Jolla, CA 92093 USA
jyl011@eng.ucsd.edu

Neema Mahdavi
UC San Diego
9500 Gilman Dr.
La Jolla, CA 92093 USA
mahdavi@ucsd.edu

Amer Sinha
UC San Diego
9500 Gilman Dr.
La Jolla, CA 92093 USA
amsinha@ucsd.edu

something which a hard copy could not accomplish. We
also take into account the major complaints that users
typically have when digitizing paper, including having to
stop the reading process to define words and having to
manually recreate highlights page by page at a later
time. The system encourages higher productivity by
speeding these processes along and leaving a user free
to focus on the reading material.

Motivation and Related Work
One of the driving forces behind our work was based on
Sellen and Harper’s work of the “Myth of the Paperless
Office.” Rather than getting rid of paper, technology
has shifted the point at which paper is used for doing
work [2]. Instead of providing another interface that
users would have to learn, our challenge is to support
how people already do their work. However, there is a
reason that digital technologies have not replaced
paper. The affordances of paper are about what people
can do with paper [2]

Presented by Sellen and Harper, one of the
disadvantages of paper is the interactional problem it
provides [2], namely the limitations of the use of
paper. One of our primary motivations was the problem
that paper and the work done on paper cannot be
accessed remotely. Another motivation for continuing
to use paper was the ubiquity that paper affords and
that paper is still the medium of choice for reading,
even though most high-tech technologies are to hand
[2].

The microanalysis of active reading performed by Hong
et al. provides us with a framework with which to base
our gestures and also provides considerations for
designing an augmented desktop workspace [3].

Using paper and the user’s natural workplace, we are
also able to use the user’s natural work environment
without having to worry about screen real estate and
resolution. The spatial dynamics of this environment is
also part of the user’s cognitive process that simplify
internal computation, as how people manage the
spatial arrangement of items around them is an integral
part of the way we think, plan, and behave [4].

System Description
Hardware and Software Requirements
Read# requires multiple components to function: one
Microsoft Kinect, the Interactive Spaces SDK 12/14/12
8:47 PM, a projector, and the use of a webcam. For our
environment, we used the Microsoft LifeCam. The
implementation of Interactive Spaces was critical in
order for seamless integration into the environment for
the Read# system.

Gestures
The gesture detection offered in Interactive Spaces was
very minimal; after calibration, the SDK would detect
fingertip presses via event handlers, and nothing more.
The presses were also required to be spot-on towards
the Kinect and have a forty-five degree angle between
the finger the surface.

The highlight gesture specifically looks for six fingers
down on the paper (or five fingers and a writing
utensil). One contact would be made by the writing
hand and five on the opposite hand, which is a gesture
noted in the analysis done by Hong et al [3]. Six
contacts is a rarity during the usual writing process so
it made it easier for the program to ignore noise. When
six simultaneous contacts are detected, the program
begins waiting for the highlight gesture to end before

It’s assumed that the highlight ends when there are
removed was the pen (or finger) that was touching the
highlighted area.

The “define” gesture consists of two contacts for an
extended period of time. The program is calibrated to
two seconds, as two seconds of constant, uninterrupted
contact from two fingers appears to be rare and doesn’t
leave room in input ambiguity. As soon as the last
contact is made the timer resets itself and continues
counting upwards, and if there are two recorded
contacts when the timer increments to two the OCR is
activated and attempts to define the word.

Highlighting & OCR
Every time a gesture occurs, the program takes an
image of the workspace and processes the data to find
highlights and definition requests. To process the
image, we require a high-resolution camera, as the one
on the Kinect does not provide enough information to
be successfully processed into text using OCR
technology. The system, in its most basic sense, works
by first capturing an image from webcam, then
detecting the document, then detecting the highlighted
area, and then finally removing the noise and then
processing the image through an OCR engine to obtain
a text string.

To get the initial image, we capture a video stream
from the Microsoft LifeCam using DirectShow and
OpenCV libraries. These libraries are implemented as
part of the EmguCV library wrapper that we use for C#.
The video stream received from the EmguCV library is a
series of RGB images that are continuously updated to
the newest frame, which are stored in an EmguCV
wrapper for a Bitmap image so we can simply get the

newest frame as a Bitmap by calling a function. As the
image is a Bitmap, it is lossless and allows for simple
execution of filters on it.

The first step is to convert the image into Hue,
Saturation and Brightness (HSB) format so it is easier
to process for highlights. After this, we split the image
into 3 streams; hue, saturation and brightness. We
then detect the highlights by detecting running a binary
filter to detect a range of +/- 10 from the saturation
value of the color we want to detect. We run the same
type of filter on the hue stream and get two binary
images with the highlight separated from the image.
We can also detect the exact color of the highlight by
using the hue stream. Now, we run an Erosion filter
with 2 passes on both the images to remove any noise
that was also detected as the same hue or brightness.
We take a union of the binary images to get a more
accurate area of where the highlight is. Afterwards, to
further improve the image we run a Convolution filter
with n as 3. Following the Convolution filter, we run a
four pass Dilation filter to remove noise inside the
highlighted area if the area was not detected properly.
After that, we run a binary filter on the brightness
stream so that we only have the text remaining on the
brightness stream. When we are left with just the
highlights, we remove all the information other than
the text from the image by taking its union with the
highlight-filtered image so that all the color from the
highlight is removed and the OCR engine has an easier
time processing the image. We can then run a block
detection algorithm to detect the separate highlights
and their dimensions. We then crop out the separate
highlighted areas that are greater than a certain
amount of area. After we have the separated
highlights, we send these images to the Tesseract OCR

Figure 1: The “Define” Gesture as
seen through the Kinect.

Figure 2: The “Highlight” Gesture
as seen through the Kinect. The
Kinect cannot distinguish
between a finger or a pen as the
6th contact point.

engine to extract the highlighted text from the original
image.

The Tesseract OCR Engine then returns an array of
characters and its accuracy confidence level. We simply
return the string right now but there is a possibility to
run the whole process on another frame until we get
acceptable confidence levels. We can then return a
Regular Expression instead of just a string so it will be
easier to match even if some words are harder to read
for the OCR Engine

Dictionary
The Dictionary component performs a search of a
keyword on http://oxforddictionaries.com and returns
the definition given by the website. We implemented a
dictionary over the web because it is easily extendable
to searches over Wikipedia, Google, and other user
preferred websites. The definition is then projected
onto the workspace to the left of the documented being
read.

Interface
Our choice in removing any graphical interface for user
interaction was also based on Csíkszentmihályi’s notion
of flow [1], as we did not want the user to break their
state of absorption in an activity to interact with the
system instead of their work.

PDF Editor
The PDF Editor’s task is to modify the digital copy of
the PDF to reflect physical modifications of the paper. A
user could highlight key sentences, add jpeg
annotations, and add text-based annotations to the
digital PDF as she works with the physical paper. The
PDF may be located in a user’s Dropbox folder.

A highlight is added to the digital PDF by passing in a
regular expression of a highlighted sentence extracted
by the OCR component to the PDF Editor. The editor
looks through the entire document and highlights all
matching patterns. Image annotation is added by
passing an image along with the regular expression of
the anchor to the PDF Editor. The image will be
included as a file annotation.

Analysis
Environment
Since we were limited by the video resolution of the
Kinect camera, a LifeCam was used to read the text.
Although the camera was directly above the document,
for the system to work we could only work with one
page at a time and the font and size of the document
were restricted to certain OCR friendly fonts. We
experimented using the Consolas font. The set up of
the environment is also very time consuming. The
Kinect camera was mounted on top of the projector
while the LifeCam was hung over the document. This
set up is most likely not preferred in a professional
setting.

Gestures
The SDK would detect knuckles, wrists, loose wires,
tripod legs, papers, and anything else it could get its
hands on as touches. Worse, the SDK could be
overloaded; in that if some malicious user banged all
ten fingers down on the space repeatedly for ten
seconds, internal detection issues would occur and the
“contact” event would interrupt the “contact removed”
event and the program would end up telling the user
they were making fifteen contacts on the space when in
reality they were making none, because the “contact

Figure 3: Three words as they
appear in the system after
extraction.

Figure 4: The definition of a word
as it would appear when
projected.

removed” event had not been heard for reasons
unknown.

The solution to this was the implementation of a
background timer that continually counts to five over
and over. When a “contact” occurs, the timer records it
and resets itself to zero. If the timer reaches five
seconds (i.e., it detects nothing for a full five seconds)
the contact counter gets reset to zero regardless of it’s
previous state, making the assumption that the user’s
hands are not in the picture and that any leftover
contacts are erroneous. This turned out to be a very
user-friendly solution for ignoring the usual reading and
writing gestures that the machine should not detect. If
the user wants to make a specific gesture, they only
need to remove their hands from the space, count to
five, and make the gesture and the machine will read
it.

PDF Editor
Since we designed the PDF to locate highlights based
on text analysis as opposed to coordinate locations, if
the PDF were to have two sentences that were exactly
alike, a user highlight of one of those sentences would
also highlight the other. This generates a more serious
concern: the inability to highlight keywords. Keywords
easily generate multiple pattern matches within a given
PDF. With our simplistic document parsing, we would
not be able to tell which of those matching keywords
the user has highlighted. A solution to this problem is
to pass in general coordinates of the highlight along
with the keyword. However, if there are multiple
keywords in general proximity of each other, without
precise coordinates, we may still encounter the same
problem.

Another issue we encountered was with page matching
for documents with multiple pages. How would our
PDFEditor know which page the user is working on?
This is an important question because if the user
highlights a keyword that happens to be in the same
location on two pages, our editor would end up
highlighting both. One method is to extract the page
number located on the corners of the page and pass
this information to the PDFEditor. However, since some
documents do not have page numbers, this solution is
not robust. Another method is to extract the last or first
sentence of a given page and determine pages based
on the string. These methods were not tested in our
system.

Conclusion and Future Work
Read# is currently very sensitive to its environment
due to the software used to develop it. A few changes
to the system would make it more robust and more
powerful than it currently is. We currently use the
Interactive Spaces SDK which let us accomplish basic
tasks, but for future implementations we are hoping to
use 3Gear Systems’ API1 and setup of using two
mounted Kinects. Because of the information flowing in
from two Kinects, this setup is able to provide
millimeter-level accuracy of the hands and fingers.
Future implementations should implement straightening
algorithms for running the document through the OCR
software, since words on a diagonal are difficult to
detect. Currently, the document must be perfectly
aligned to be recognized by the OCR features. However
a straightening algorithm will allow the users to not
have to worry about the orientation of the paper and
work more naturally. Our system currently only

1 http://www.threegear.com/technology.html

supports the PDF Editor feature to PDFs that exist in
the system library. However we hope to extend this
feature so users will be able to scan their own
documents into the system by using the cameras to
scan them into the system, or find existing documents
online. We would also like to support multiple paged
documents in future implementations. A future
direction for the dictionary component might allow
more user interaction with the results. Perhaps a search
over Oxforddictionaries.com is not sufficient and the
user wishes to see the results for Wikipedia as well.
This would be useful if the user is trying to look up
idioms that would not be in the Oxford dictionary or
words in a foreign language. This would be one way to
support translation features in Read# and assist in
learning a new language.

Through our work, we have presented Read#, a new
system to introduce the advantages of digital
documents to the realm of physical documents.

References
[1] M. Csikszentmihalyi, Flow: The Psychology of

Optimal Experience. HarperCollins, 2008.
[2] A. J. Sellen and R. H. R. Harper, The Myth of the

Paperless Office. MIT Press, 2003.
[3] M. Hong, A. M. Piper, N. Weibel, S. Olberding, and

J. Hollan, “Microanalysis of active reading behavior
to inform design of interactive desktop
workspaces,” in Proceedings of the 2012 ACM
international conference on Interactive tabletops
and surfaces, New York, NY, USA, 2012, pp. 215–
224.

[4] D. Kirsh, “The intelligent use of space,” Artif.
Intell., vol. 73, no. 1–2, pp. 31–68, Feb. 1995.

[5] N. Weibel, Y, Lui, R. Kanoknukulchai, A. M. Piper,
and J. Hollan, “Revisiting the DigitalDesk: A Framework
for Interaction On and Above the Desktop.”

